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INTRODUCTION

Particle-in-Cell (PIC) calculations have become an indispensable tool to model the nonlinear collective
behavior of charged particle species in electromagnetic fields. Traditional finite difference codes, such as
CONDORZ1(2-D) and ARGUSZ(3-D), are used extensively3.4,5,6,7.8 1o design experiments and develop new
concepts. A wide variety of physical processes can be modeled simply and efficiently by these codes. However,
experiments have become more complex. Geometrical shapes and length scales are becoming increasingly more
difficult to model. Spatial resolution requirements for the electromagnetic calculation force large grids (50-100
thousand mesh points) and small time steps. Many hours of CRAY YMP time may be required to complete 2-D
calculations - many more for 3-D calculations. In principle, the number of mesh points and particles need only to be
increased until all relevant physical processes are resolved. In practice, the size of a calculation is limited by the
computer budget. As a result, experimental design is being limited by the ability to calculate, not by the
experimenters ingenuity or understanding of the physical processes involved.
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Fig. 1. The CONDOR finite difference stencil is shown on the left, active zones in a 20x20 mesh discretization of a
circle are shown on the right.

Several approaches to meet these computational demands are being pursued. Traditional PIC codes continue
to be the major design tools. These codes are being actively maintained, optimized, and extended to handle larger and
more complex problems. Two new formulations are being explored to relax the geometrical constraints of the finite
difference codes. A modified finite volume? test code, TALUS, uses a data structure compatible with that of standard
finite difference meshes. This allows a basic conformal boundary/variable grid capability to be retrofitted to
CONDOR (Mesh generation is accomplished via a point & click interface using the SMaRT10 code running on a
Macintosh). We are also pursuing an unstructured grid finite element code,!! MadMax (mesh generation begins
with a simple description of the boundaries and is "advanced" into the interior as fronts1 2). The unstructured mesh
approach provides maximum flexibility in the geometrical model while also allowing local mesh refinement. Both
innovative approaches 1o electromagnetic PIC calculations are generalizable to 3-D.
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FINITE VOLUME FORMULATION

Finite volume formulations of electromagnetic PIC codes are being pursued in order to relax the geometrical
meshing constraints of the traditional finite difference mesh. The field propagator we are investigating in the
TALUS test code uses a distorted rectangular mesh with a staggered centering of the field components which reduces
1o the standard leap-frog algorithm on a uniform mesh. Thus, CONDOR (ARGUS) can be easily retrofitted to the
new finite volume propagator. Physicists would then have access to conformal boundaries and distorted grids with a
minimum of change in the computer codes - however problem setup and diagnostic visualizations may be
substantially more difficult

The Talus Field Solve

As shown in Fig. 2, the field propagator uses a staggered centering of the electric field projections along the
four sides of each 2-D mesh cell (zone) to represent the transverse electric triad solutions to Maxwell's equations.
The electric fields are updated in a three step process. First, the dEn/dt along the dual side normal is calculated from
a simple difference of the two neighboring Bz values as in a normal leap-frog propagator. Then the total dEx/dt and
dEy/dt is calculated by a finite volume integral around the six nearest zones. Finally, the value of dEt/dt (along the
zone boundary) is solved using the value of the total dE/dt and the dEn/dt calculated in the previous step. The Bz
values are updated from a line integral around the zone boundary using the side directed electric field values.

The exact form of the finite volume path integral determines the stability and accuracy of the resulting field
propagator. The present field propagator uses a volume weighted average Lo center Bz to the zone vertices. A simple
difference provides the dEn/dt values. Again the dEt/dt value is found from a projection of the known electric ficlds
10 the zone edge. This field propagator is stable and preserves local divergence constraints.
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Fig. 2. The finite volume staggered grid is shown on the left, a 20x20 mesh of quadrilaterals "stretched"” into a circle
is shown on the right.
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The Talus Particle Push

Logical space (uniform rectangular) coordinates are used in a standard bilinear area weighting scheme for
both field interpolations and current depositions. For simplicity, the particle's field interpolation and current
deposition is all done using quantities centered on the vertices of the primary grid. These quantities are averaged as
necessary to obtain values at other locations. This process introduces some smoothing of the particle source terms
and of the field actually seen by the particles. If the problem is well resolved, this may be an advantage compared to
the normally noisy finite difference codes. However, in most practical problems, this introduces an inaccuracy in the
TALUS result which is not present in CONDOR or ARGUS.

Tracking particles efficiently through an irregular mesh of quadrilaterals can be challenging. We have
chosen to combine the problem of particle tracking and calculating the particle weights by using a bilinear mapping
suggested by Westermann< 3 which maps an arbitrary (but convex) quadrilateral onto a unit square. After the panicle
advance, the weights are calculated relative to each particle's previous zone, If the new logical weights are all
between zero and one, the particle is still in the same zone and we are done. However, if the particle has crossed a
zone boundary, the values of the resulting logical weight functions will suggest the direction to continue the search.
The weights are then calculated for the new zone. This process is iterated until the particle is located. However, the
bilinear mapping of the quadrilaterals to the unit square is only guaranteed to exist inside the quad. For highly
distorted quads, the mapping may not exist. In this case a more robust "area” method is used to determine the
direction to continue the search.

FINITE ELEMENT FORMULATIONS on UNSTRUCTURED GRIDS

One of the most promising approaches to performing simulations in realistic geometries makes use of
unstructured grids. A single point may be connected to any number of neighbors to form a grid of triangles and
quadrilaterals. Even when the grid is restricted to triangles, the arbitrary point connectivity of unstructured grids
provides tremendous geometric flexibility. An example of a geometrically complex grid is shown in Fig. 3.
Another feature made possible by the unstructured grid is the capability to perform local adaptive refinement during
the calculation. This becomes advantageous in plasma simulations by allowing various plasma sheaths or density
perturbations to be resolved and tracked without greatly increasing the number of grid points which must be
calculated. We are using the MadMax finite element PIC code to explore unstructured-grid formulations.

The MadMax Field Solve

The unstructured grid field propagator uses both conforming and non-conforming elements. The
conforming elements have sample points located on the vertices, while the non-conforming elements have sample
points located on the element sides. The resulting staggering of field quantities, as shown in Fig. 4, is more like the
standard staggered finite difference schemes. Analysis of this new formulation indicates that the local divergence
constraints are preserved (within round-off).

Particle Tracking

One apparent difficulty with using particle techniques on unstructured grids is that the particles must be
located on the mesh before their charge or current can be assigned to the appropriate nodes. However, for a mesh of
triangles, the linear function which interpolates the charge of a particle inside an element onto a particular node is
easily evaluated. The weight functions have a value of unity at the node and fall to zero on the line joining the
remaining two nodes. If, a particle is outside the element, at least one of the weights will be negative. This simple
property can be used to define an efficient particle search procedure. After the particle advance, the particle weights
are calculated with respect to the element it was in on the last time step. If all of the weights are positive, the
particle is still in the old element. If not, we guess the new particle’s element to be the one adjacent to the side
opposite the node whose weight is most negative. The particle weights are then calculated for the new element.
This process is iterated until the particle is located. Given the normal Courant limit for the time step size, most
particles will be located in under three iterations. This search technique can be made more efficient on vector
machines. The addition of a small amount of sar!.ing]-"1 can produce vector-to-scalar speedups of up to 14:1.
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Fig. 4. The staggered mesh locations of the field quantities are shown on the left for the non-conforming finite
element formulation. The TE and TM representations of one element are shown separately. Et is the electric field
langent to the element side. Bn is the component of the B field normal to the element side. A finite element
triangular discretization of a circle using 314 elements is shown on the right.

SUMMARY

Design and analysis of experiments requires a rich variety of physical models. Traditional finite difference
codes provide detailed physical models, but allow only simple geometries. This leads to stair-stepped boundaries and
large grids. Innovative conformal boundary techniques promise to relax this restriction. The finite volume
structured grid approach offers conformal boundaries and variable grids with a minimum of change in the standard
finite difference codes. Unstructured grids provide the maximum geometric flexibility but represent a radical
departure (e.g. data structures) from the current generation of production codes. Future development work must
provide both detailed physical models and flexible geometries.
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