Software Design of a Proof-of-Concept Advanced
Air Traffic Control Display

Eric M. Shank

Massachusetts Institute of Technology Lincoln Laboratory

L. Introduction

While I was a graduate student at the University of Kansas, most of my
interactions with Tom Armstrong were through my involvement with the use, day
to day operation, and management of computer systems, first the MODCOMP II,
and later the VAX 11/750. It was during the time I spent working with these
computer systems, and the faculty and students that used them, that I developed
much of the expertise in computer systems that is valuable to me in my current
work involving design and implementation of software and algorithms for use in
air traffic control systems. In light of this, it seems appropriate to me that my
contribution to this tribute to TPA should be a high-level description of a software
system that I designed for a proof-of-concept implementation of a proposed air
traffic control system.

This software system is an integral part of a proof-of-concept radar display.
It was designed as a framework in which implementation, testing, demonstration,
and refinement of a number of prototype algorithms could be combined with a data
collection function. The high level system design is not closely tied to either the
particular application or the details of the prototype algorithms. Therefore, I will
describe the design of the framework, and ignore the details of the algorithms and

the application.
2. Design Goals for the Display System

Since this system was designed to be used in testing, demonstration and
refinement of algorithms, and since the software system, with the prototype
algorithms in place and operating, was the final product as well as an analysis
tool, the design goals were somewhat different than those often applied to software
used in experimental environments. The major design goals were as follows:

3H



1) Real Time Operation - The system was designed for demonstration
and testing of algorithms for a time-critical air traffic control
application. Therefore, it was essential that the system be efficient
enough to provide the necescary funstiona in »ronl tims.

2) Data Recording / Diagnostic Capability - A means of recording data
for later analysis was required to support both the data collection
function, recording aircraft positions, and the testing and
refinement of algorithms, recording additional diagnostic
information,

3) Flexibility - Because algorithms were expected to be modified or
replaced frequently, it was important that the system design allow
for extensive modification of algorithms and the addition or
removal of algorithms with minimal impact on the overall system.

4) Manageability - The time schedule for implementation was short -
less than a year from design to field implementation - so the design
was required to allow the implementation effort to be manageably
divided among a small team of programmers.

5) Implementation on an Existing Platform - Because of the short time
schedule, it was necessary to implement the system on off-the-shelf
commercial hardware, using a commercial multitasking
operating system.

3. Display System Top Level Design

The system design that emerged from these design goals is highly
modular, very flexible, and implementable on most standard multitasking
operating systems. It incorporates a number of independent processing modules,
implemented as separate processes, each of which carries out a particular function.
This modular design made management of the software development team simple,
since each programmer could be assigned one or more self contained processing
modules to design, code, and test. In addition, because it allows for a well-defined
control and communication interface, it provides a high degree of flexibility. If an
algorithm is to be changed, typically only a single processing module must be
recoded. If an additional function must be added, it can be incorporated by adding
another processing module and its associated communication and control ports.

The high level block diagram in Figure 1 shows the use of individual
processing modules for separate functions. In the diagram, rectangular boxes
represent processing modules, trapezoidal boxes represent communication ports,

36



and hexagonal boxes represent control ports. This diagram includes the kernel
processing modules that carry out the primary functions of the proof-of-concept
display system. Additional modules are configured when additional functions are
required.

3.1 Desi f a Pr ing Modul

The entire system is event driven, with activity being initiated by the flow of
data through the system. Each processing module is based on a common design,
having one or more data input ports, and one or more data output ports. Input and
output ports may be either communication ports (described below) or external
devices such as keyboards, graphics displays, serial communication devices and
magnetic tape drives.

Display
Control .

Display

Parameter Buffer

"
]
I
i
. SR

Real Time Alert =
Input Buffer = .
Generation

_\"L‘“
:
3
[w]
g
El
A

Control Output
_y Buffer /- QOutput

r—
|
]
|

Figure 1. Display system block diagram




The flow of control through each module is similar to that shown in
Figure 2. First, the processing module carries out any necessary initialization.
When initialization is complete, the processing module waits to be released for
normal operation. After it is released, if there is no data available at the input
port(s), the processing module goes to sleep. When data becomes available, the
processing module wakes up, accepts the data, updates its control parameters if they
have been changed, processes the data, and outputs the data. It then checks for
additional data at the input port(s). Processing continues until no more data is
available, at which point the processing module again goes to sleep. Allocation of
processing time between modules is handled by the underlying multitasking
operating system. Implementation of this control flow may become fairly
complicated, especially when a module has several input and/or output ports.
Nevertheless, each processing module is based on this design.

Wait Wait
G
Initialize f— for _l.- for Process encrate l

Output
Release Input Data nten

Parameter
Data

Figure 2. Basic control flow of a processing module

3.2, Communication and Control

Communication between individual processing modules is carried out
through communication ports, called buffers, using a message passing protocol.
Each buffer contains a linked list message queue. Messages entered into a buffer
are queued to the tail of the linked list, and messages are removed from the head of
the list. Messages can be entered into a buffer by one or more processing modules,
but only one module is allowed to remove messages from a given buffer. Messages
are obtained by allocation from a pool of free messages or by removal from a buffer.
Once a processing module obtains a message, it owns the message until the
message is entered into another buffer or released. Messages entered into a buffer
are owned by the buffer. When a message is released, and is not concurrently
owned by another processing module or buffer, it is returned to the free pool and
made available for future use.



Process control is handled partly through passing control messages
between processing modules, and partly through a set of control ports called
parameter data blocks. Each parameter data block contains parameters that
control the operation of a particular processing module. These parameters can be
dynamically modified by the operator through the operator interface.

Access to buffers and parameter data blocks, as well as allocation and
release of messages, is carried out by access functions that are common to all
processing modules. Any necessary synchronization or mutual exclusion is
handled by the access functions. In addition, the buffer access functions generate
the events needed to wake a processing module that is asleep while waiting for data
to arrive at a buffer.

All messages have a common format that includes a message type field.
The type field is used by each processing module to determine whether it needs to
process a specific message. Messages that are not processed by a specific module
are simply placed unchanged in the output buffer, when the output port is a buffer,
and are processed by other modules further downstream. Therefore, when the
contents of a specific type of message must be changed, or a new message type

added, only those processing modules that process that particular type of message
must be modified.

3.3. m nd Sh

Since the total software system is composed of a set of independent,
asynchronously operating, processing modules, each processing module must be
started and allowed to complete its initialization before the entire system can begin
to function properly. In addition, when the operator interface receives the
command to stop the system, it is necessary to see to it that each individual
processing module is stopped. These functions are carried out by the executive
program.

Flow of control in the executive program is shown in Figure 3. The
executive first initializes all data structures, including parameter data blocks and
buffers. It then reads a configuration file that specifies which of the possible
processing modules will be active during this activation of the display system. The
executive program then enters a loop that starts each configured processing module
and waits for it to complete its initialization before proceeding to start the next
module. When there are no more modules to be started, the executive releases all of
the processing modules and puts itself to sleep pending a shutdown request. When

39



a shutdown request is received, it executes another loop that stops each module in
turn. Finally, when all processing modules have been stopped, the executive
program exits.

3.4.  Display System Operation

In order to understand the operation of the display system, it is useful to
consider the flow of data through the processing modules shown in Figure 1. Radar
data enters the system at the real-time input module, where it is formatted and
copied into a message. The message is entered into the alert buffer. The tracking
and alert generation module removes the message from the alert buffer, processes
the data, and adds additional information to the message before entering it into the
control buffer. The control module acts as a traffic cop, collecting messages from
both the operator buffer and the control buffer. It then determines which of the
display, output and recording modules should receive each type of message, and
enters the messages into the appropriate buffer(s).

The display module removes messages from the display buffer and uses the
information in the messages to update the display graphics. The output module
reformats the data from messages removed from the output buffer and transfers it to
an external communication device, usually to another display system at a remote
site. The recording module copies the messages it receives from the recording

buffer to magnetic tape.

Initialize
Data “;’:‘;“l All Exit

Structures odules
Read Select Wait for Select

Configuration Next Shutdown Next

File Module Request Module
| I —1

Stop
Module

Figure 3. Control flow of the executive program



The operator controls the system from the operator interface. Commands
are entered using a mouse or trackball and a keyboard. Since the operator
interface module uses the graphic display heavily, it is directly connected to the
display module (in the implementation I used, they are coded as part of the same
program). Commands are communicated to parameter data blocks or directly to
the display module. In addition, each command entered generates an operator
message that is entered into the operator buffer.

3.5. Dat cording and Di i

Because of the message passing design of the system, with all messages
being passed through the control module, and because all operator inputs generate
messages that document the input, the system is capable of recording and
regenerating the entire state of the system. This includes any radar data messages
received at the input as well as any other messages generated throughout the
system. Thus diagnostic and data recording requirements are met.

4. Comments on Realization of Design Goals

Over the past several years, I have been involved in the implementation,
testing, operation and maintenance of a display system based on this design. The
system was implemented on a VAX workstation platform running the VMS
operating system. Implementation from completion of design to first on-site test
was carried out in about six months by a team of three programmers. This
implementation performs well as a real time display, as a data collection system,
and as a platform for analyzing the performance of prototype algorithms.

The flexibility of the design has been demonstrated on several occasions
with the addition of functions that were not expected, at design time, to be a part of
the system. These additions have required minimal modifications to existing
code. In addition, the highly modular nature of the design enhances the overall
maintainability of the system.

My experience with this system indicates that the system design has been
highly successful. All of the design goals have been realized in the
implementation with which I have worked.



